suites variations Corrigé - 1re EDS
Publié le 07/01/2023
Extrait du document
«
1ère EDS
Travail en binôme
ch2:
1.
LES SUITES - généralités – calculs de termes
2.
2022-2023
Exercice 1 : on considère la suite (𝑈𝑛 ) définie sur ℕ par 𝑈𝑛 = 2𝑛² + 3
a- Comment est générée cette suite ?
b- Calculer les 4 premiers termes de la suite (𝑈𝑛 ).
Tous les détails des
calculs sont attendus.
c- Est-il possible de calculer 𝑈25 "aisément": expliquer la réponse.
d- Programmer la suite à l'aide de la calculatrice, vérifier b), puis
donner la valeur de 𝑈25 .
e- Compléter le graphique (avec la précision accordée par le repère)
f- D'après les résultats observés (valeurs et graphique), émettre une
conjecture (une hypothèse) sur les variations de la suite (𝑼𝒏 ) (la
suite est-elle croissante ou décroissante)
a- La suite 𝑼𝒏 est générée de façon explicite, comme une fonction.
on a 𝑼𝒏 le terme général est de la forme 𝑼𝒏 = 𝒇(𝒏) avec 𝒇 𝒙 = 𝟐𝒙𝟐 + 𝟑
b- 𝑼𝟎 = 𝒇 𝟎 = 𝟐 𝟎 𝟐 + 𝟑 = 𝟑
𝑼𝟏 = 𝒇𝟏) = 𝟐 𝟏 𝟐 + 𝟑 = 𝟓
𝑼𝟐 = 𝒇 𝟐 = 𝟐 𝟐 𝟐 + 𝟑 = 𝟏𝟏
𝑼𝟑 = 𝒇 𝟑 = 𝟐 𝟑 𝟐 + 𝟑 = 𝟐𝟏
c- Pour calculer 𝑼𝟐𝟓 , on calculer simplement 𝒇(𝟐𝟓)
d- 𝑼𝟐𝟓 = 𝟐 𝟐𝟓 𝟐 + 𝟑 = 𝟐 × 𝟔𝟐𝟓 + 𝟑 = 𝟏𝟐𝟓𝟑
e- D'après le tableau de valeurs, et d'après le graphique, il semble que la suite (𝑼𝒏 )
est strictement croissante
Exercice 2 : on considère la suite (𝑉𝑛 ) définie sur ℕ par
abcd-
𝑉𝑛+1
𝑉0 = 3
= −2𝑉𝑛 + 3
Comment est générée cette suite ?
Calculer les 4 premiers termes de la suite (𝑉𝑛 ).
Tous les détails des calculs sont attendus.
Est-il possible de calculer 𝑉25 "aisément": expliquer la réponse.
Programmer la suite à l'aide de la calculatrice, vérifier b), puis donner la valeur de 𝑉25 .
(avec la notation
appropriée)
e- D'après les résultats observés, émettre une hypothèse (une conjecture) sur les variations de la suite (𝑉𝑛 ).
a- La suite 𝑽𝒏 est générée de façon récurrente, on initialise la suite et chaque....
»
↓↓↓ APERÇU DU DOCUMENT ↓↓↓
Liens utiles
- CONTRÔLE suites corrigé
- David HUME (1711-1776) Enquête sur l'entendement humain, Ve section, 1re partie
- SUITES NUMERIQUES REELLES PARTICULIERES.Première
- comment les suites numériques permettent – elles d’étudier l’évolution d’une population ?
- Commentaire de texte - De l'Allemagne, Madame de Staël Proposition de corrigé