Conic Sections.
Publié le 06/12/2021
Extrait du document
Ci-dessous un extrait traitant le sujet : Conic Sections.. Ce document contient 215 mots. Pour le télécharger en entier, envoyez-nous un de vos documents grâce à notre système d’échange gratuit de ressources numériques ou achetez-le pour la modique somme d’un euro symbolique. Cette aide totalement rédigée en format pdf sera utile aux lycéens ou étudiants ayant un devoir à réaliser ou une leçon à approfondir en : Echange
Conic Sections.
Conic Sections, in geometry, two-dimensional curves produced by slicing a plane through a three-dimensional right circular conical surface. This surface is similar to two
hollow cones held tip to tip. If the plane cuts the surface at right angles to the surface's axis (a line passing through the exact center of the cones), a circle is produced.
A slice parallel to a surface of the cones produces a parabola. Any cut between these two types of slices results in an ellipse. More vertical cuts that intersect both cones
produce hyperbola. For detailed information on each type of conic section, see Circle, Parabola, Ellipse, and Hyperbola.
Passing the plane through the conical surface in certain specific ways produces degenerate conics, which include a point, a line, a pair of parallel lines, and a pair of
intersecting lines. If the surface is cut at the point where the two cones meet by a plane perpendicular to the axis, for example, a point is produced.
The Greek mathematician Apollonius of Perga, who lived from the early 300s to the late 200s
superseded previous work on the subject by Aristarchus of Sámos and Euclid.
Microsoft ® Encarta ® 2009. © 1993-2008 Microsoft Corporation. All rights reserved.
BC,
wrote eight books with the title Conic Sections. These books
Conic Sections.
Conic Sections, in geometry, two-dimensional curves produced by slicing a plane through a three-dimensional right circular conical surface. This surface is similar to two
hollow cones held tip to tip. If the plane cuts the surface at right angles to the surface's axis (a line passing through the exact center of the cones), a circle is produced.
A slice parallel to a surface of the cones produces a parabola. Any cut between these two types of slices results in an ellipse. More vertical cuts that intersect both cones
produce hyperbola. For detailed information on each type of conic section, see Circle, Parabola, Ellipse, and Hyperbola.
Passing the plane through the conical surface in certain specific ways produces degenerate conics, which include a point, a line, a pair of parallel lines, and a pair of
intersecting lines. If the surface is cut at the point where the two cones meet by a plane perpendicular to the axis, for example, a point is produced.
The Greek mathematician Apollonius of Perga, who lived from the early 300s to the late 200s
superseded previous work on the subject by Aristarchus of Sámos and Euclid.
Microsoft ® Encarta ® 2009. © 1993-2008 Microsoft Corporation. All rights reserved.
BC,
wrote eight books with the title Conic Sections. These books
↓↓↓ APERÇU DU DOCUMENT ↓↓↓
Liens utiles
- SectionnairesLa Révolution de 1789 divise Paris en 48 sections.
- Université des Sciences et Technologies de LilleUnité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS/USTL 8576Licence de Sciences et Technologies B (S3)UE Génétique formelle et moléculaire(Sections 2 et 3)Seconde session d'examens.
- AMPERE, André Marie (1775-1836) Physicien Excessivement précoce, Ampère compose à treize ans un traité des sections coniques.
- L'oeuvre de Tchouang-Tzeu L'oeuvre de Tchouang-Tzeu est divisée en trois sections :LIVRES I à VIIappelés " Section intérieure " ; c'est l'exposé ésotérique complet et authentique de ladoctrine.