Acid Rain.
Publié le 06/12/2021
Extrait du document
Ci-dessous un extrait traitant le sujet : Acid Rain.. Ce document contient 2904 mots. Pour le télécharger en entier, envoyez-nous un de vos documents grâce à notre système d’échange gratuit de ressources numériques ou achetez-le pour la modique somme d’un euro symbolique. Cette aide totalement rédigée en format pdf sera utile aux lycéens ou étudiants ayant un devoir à réaliser ou une leçon à approfondir en : Echange
Acid Rain.
I
INTRODUCTION
Acid Rain, form of air pollution in which airborne acids produced by electric utility plants and other sources fall to Earth in distant regions. The corrosive nature of acid
rain causes widespread damage to the environment. The problem begins with the production of sulfur dioxide and nitrogen oxides from the burning of fossil fuels, such
as coal, natural gas, and oil, and from certain kinds of manufacturing. Sulfur dioxide and nitrogen oxides react with water and other chemicals in the air to form sulfuric
acid, nitric acid, and other pollutants. These acid pollutants reach high into the atmosphere, travel with the wind for hundreds of miles, and eventually return to the
ground by way of rain, snow, or fog, and as invisible "dry" forms.
Damage from acid rain has been widespread in eastern North America and throughout Europe, and in Japan, China, and Southeast Asia. Acid rain leaches nutrients
from soils, slows the growth of trees, and makes lakes uninhabitable for fish and other wildlife. In cities, acid pollutants corrode almost everything they touch,
accelerating natural wear and tear on structures such as buildings and statues. Acids combine with other chemicals to form urban smog, which attacks the lungs,
causing illness and premature deaths.
II
FORMATION OF ACID RAIN
The process that leads to acid rain begins with the burning of fossil fuels. Burning, or combustion, is a chemical reaction in which oxygen from the air combines with
carbon, nitrogen, sulfur, and other elements in the substance being burned. The new compounds formed are gases called oxides. When sulfur and nitrogen are present
in the fuel, their reaction with oxygen yields sulfur dioxide and various nitrogen oxide compounds. In the United States, 70 percent of sulfur dioxide pollution comes
from power plants, especially those that burn coal. In Canada, industrial activities, including oil refining and metal smelting, account for 61 percent of sulfur dioxide
pollution. Nitrogen oxides enter the atmosphere from many sources, with motor vehicles emitting the largest share--43 percent in the United States and 60 percent in
Canada.
Once in the atmosphere, sulfur dioxide and nitrogen oxides undergo complex reactions with water vapor and other chemicals to yield sulfuric acid, nitric acid, and other
pollutants called nitrates and sulfates. The acid compounds are carried by air currents and the wind, sometimes over long distances. When clouds or fog form in acidladen air, they too are acidic, and so is the rain or snow that falls from them.
Acid pollutants also occur as dry particles and as gases, which may reach the ground without the help of water. When these "dry" acids are washed from ground
surfaces by rain, they add to the acids in the rain itself to produce a still more corrosive solution. The combination of acid rain and dry acids is known as acid deposition.
III
EFFECTS OF ACID RAIN
The acids in acid rain react chemically with any object they contact. Acids are corrosive chemicals that react with other chemicals by giving up hydrogen atoms. The
acidity of a substance comes from the abundance of free hydrogen atoms when the substance is dissolved in water. Acidity is measured using a pH scale with units from
0 to 14. Acidic substances have pH numbers from 1 to 6--the lower the pH number, the stronger, or more corrosive, the substance. Some nonacidic substances, called
bases or alkalis, are like acids in reverse--they readily accept the hydrogen atoms that the acids offer. Bases have pH numbers from 8 to 14, with the higher values
indicating increased alkalinity. Pure water has a neutral pH of 7--it is not acidic or basic. Rain, snow, or fog with a pH below 5.6 is considered acid rain.
When bases mix with acids, the bases lessen the strength of an acid (see Acids and Bases). This buffering action regularly occurs in nature. Rain, snow, and fog formed
in regions free of acid pollutants are slightly acidic, having a pH near 5.6. Alkaline chemicals in the environment, found in rocks, soils, lakes, and streams, regularly
neutralize this precipitation. But when precipitation is highly acidic, with a pH below 5.6, naturally occurring acid buffers become depleted over time, and nature's ability
to neutralize the acids is impaired. Acid rain has been linked to widespread environmental damage, including soil and plant degradation, depleted life in lakes and
streams, and erosion of human-made structures.
A
Soil
In soil, acid rain dissolves and washes away nutrients needed by plants. It can also dissolve toxic substances, such as aluminum and mercury, which are naturally
present in some soils, freeing these toxins to pollute water or to poison plants that absorb them. Some soils are quite alkaline and can neutralize acid deposition
indefinitely; others, especially thin mountain soils derived from granite or gneiss, buffer acid only briefly.
B
Trees
By removing useful nutrients from the soil, acid rain slows the growth of plants, especially trees. It also attacks trees more directly by eating holes in the waxy coating
of leaves and needles, causing brown dead spots. If many such spots form, a tree loses some of its ability to make food through photosynthesis. Also, organisms that
cause disease can infect the tree through its injured leaves. Once weakened, trees are more vulnerable to other stresses, such as insect infestations, drought, and cold
temperatures.
Spruce and fir forests at higher elevations, where the trees literally touch the acid clouds, seem to be most at risk. Acid rain has been blamed for the decline of spruce
forests on the highest ridges of the Appalachian Mountains in the eastern United States. In the Black Forest of southwestern Germany, half of the trees are damaged
from acid rain and other forms of pollution.
C
Agriculture
Most farm crops are less affected by acid rain than are forests. The deep soils of many farm regions, such as those in the Midwestern United States, can absorb and
neutralize large amounts of acid. Mountain farms are more at risk--the thin soils in these higher elevations cannot neutralize so much acid. Farmers can prevent acid
rain damage by monitoring the condition of the soil and, when necessary, adding crushed limestone to the soil to neutralize acid. If excessive amounts of nutrients have
been leached out of the soil, farmers can replace them by adding nutrient-rich fertilizer.
D
Surface Waters
Acid rain falls into and drains into streams, lakes, and marshes. Where there is snow cover in winter, local waters grow suddenly more acidic when the snow melts in the
spring. Most natural waters are close to chemically neutral, neither acidic nor alkaline: their pH is between 6 and 8. In the northeastern United States and southeastern
Canada, the water in some lakes now has a pH value of less than 5 as a result of acid rain. This means they are at least ten times more acidic than they should be. In
the Adirondack Mountains of New York State, a quarter of the lakes and ponds are acidic, and many have lost their brook trout and other fish. In the middle
Appalachian Mountains, over 1,300 streams are afflicted. All of Norway's major rivers have been damaged by acid rain, severely reducing salmon and trout populations.
E
Plants and Animals
The effects of acid rain on wildlife can be far-reaching. If a population of one plant or animal is adversely affected by acid rain, animals that feed on that organism may
also suffer. Ultimately, an entire ecosystem may become endangered. Some species that live in water are very sensitive to acidity, some less so. Freshwater clams and
mayfly young, for instance, begin dying when the water pH reaches 6.0. Frogs can generally survive more acidic water, but if their supply of mayflies is destroyed by
acid rain, frog populations may also decline. Fish eggs of most species stop hatching at a pH of 5.0. Below a pH of 4.5, water is nearly sterile, unable to support any
wildlife.
Land animals dependent on aquatic organisms are also affected. Scientists have found that populations of snails living in or near water polluted by acid rain are declining
in some regions. In The Netherlands songbirds are finding fewer snails to eat. The eggs these birds lay have weakened shells because the birds are receiving less
calcium from snail shells.
F
Human-Made Structures
Acid rain and the dry deposition of acidic particles damage buildings, statues, automobiles, and other structures made of stone, metal, or any other material exposed to
weather for long periods. The corrosive damage can be expensive and, in cities with very historic buildings, tragic. Both the Parthenon in Athens, Greece, and the Taj
Mahal in Agra, India, are deteriorating due to acid pollution.
G
Human Health
The acidification of surface waters causes little direct harm to people. It is safe to swim in even the most acidified lakes. However, toxic substances leached from soil can
pollute local water supplies. In Sweden, as many as 10,000 lakes have been polluted by mercury released from soils damaged by acid rain, and residents have been
warned to avoid eating fish caught in these lakes. In the air, acids join with other chemicals to produce urban smog, which can irritate the lungs and make breathing
difficult, especially for people who already have asthma, bronchitis, or other respiratory diseases. Solid particles of sulfates, a class of minerals derived from sulfur
dioxide, are thought to be especially damaging to the lungs.
H
Acid Rain and Global Warming
Acid pollution has one surprising effect that may be beneficial. Sulfates in the upper atmosphere reflect some sunlight out into space, and thus tend to slow down global
warming. Scientists believe that acid pollution may have delayed the onset of warming by several decades in the middle of the 20th century.
IV
EFFORTS TO CONTROL ACID RAIN
Acid rain can best be curtailed by reducing the amount of sulfur dioxide and nitrogen oxides released by power plants, motorized vehicles, and factories. The simplest
way to cut these emissions is to use less energy from fossil fuels. Individuals can help. Every time a consumer buys an energy-efficient appliance, adds insulation to a
house, or takes a bus to work, he or she conserves energy and, as a result, fights acid rain.
Another way to cut emissions of sulfur dioxide and nitrogen oxides is by switching to cleaner-burning fuels. For instance, coal can be high or low in sulfur, and some coal
contains sulfur in a form that can be washed out easily before burning. By using more of the low-sulfur or cleanable types of coal, electric utility companies and other
industries can pollute less. The gasoline and diesel oil that run most motor vehicles can also be formulated to burn more cleanly, producing less nitrogen oxide pollution.
Clean-burning fuels such as natural gas are being used increasingly in vehicles. Natural gas contains almost no sulfur and produces very low nitrogen oxides.
Unfortunately, natural gas and the less-polluting coals tend to be more expensive, placing them out of the reach of nations that are struggling economically.
Pollution can also be reduced at the moment the fuel is burned. Several new kinds of burners and boilers alter the burning process to produce less nitrogen oxides and
more free nitrogen, which is harmless. Limestone or sandstone added to the combustion chamber can capture some of the sulfur released by burning coal.
Once sulfur dioxide and oxides of nitrogen have been formed, there is one more chance to keep them out of the atmosphere. In smokestacks, devices called scrubbers
spray a mixture of water and powdered limestone into the waste gases (flue gases), recapturing the sulfur. Pollutants can also be removed by catalytic converters. In a
converter, waste gases pass over small beads coated with metals. These metals promote chemical reactions that change harmful substances to less harmful ones. In
the United States and Canada, these devices are required in cars, but they are not often used in smokestacks.
Once acid rain has occurred, a few techniques can limit environmental damage. In a process known as liming, powdered limestone can be added to water or soil to
neutralize the acid dropping from the sky. In Norway and Sweden, nations much afflicted with acid rain, lakes are commonly treated this way. Rural water companies
may need to lime their reservoirs so that acid does not eat away water pipes. In cities, exposed surfaces vulnerable to acid rain destruction can be coated with acidresistant paints. Delicate objects like statues can be sheltered indoors in climate-controlled rooms.
Cleaning up sulfur dioxide and nitrogen oxides will reduce not only acid rain but also smog, which will make the air look clearer. Based on a study of the value that
visitors to national parks place on clear scenic vistas, the U.S. Environmental Protection Agency thinks that improving the vistas in eastern national parks alone will be
worth $1 billion in tourist revenue a year.
A
National Legislation
In the United States, legislative efforts to control sulfur dioxide and nitrogen oxides began with passage of the Clean Air Act of 1970. This act established emissions
standards for pollutants from automobiles and industry. In 1990 Congress approved a set of amendments to the act that impose stricter limits on pollution emissions,
particularly pollutants that cause acid rain. These amendments aim to cut the national output of sulfur dioxide from 23.5 million tons to 16 million tons by the year
2010. Although no national target is set for nitrogen oxides, the amendments require that power plants, which emit about one-third of all nitrogen oxides released to
the atmosphere, reduce their emissions from 7.5 million tons to 5 million tons by 2010. These rules were applied first to selected large power plants in Eastern and
Midwestern states. In the year 2000, smaller, cleaner power plants across the country came under the law.
These 1990 amendments include a novel provision for sulfur dioxide control. Each year the government gives companies permits to release a specified number of tons
of sulfur dioxide. Polluters are allowed to buy and sell their emissions permits. For instance, a company can choose to reduce its sulfur dioxide emissions more than the
law requires and sell its unused pollution emission allowance to another company that is further from meeting emission goals; the buyer may then pollute above the
limit for a certain time. Unused pollution rights can also be 'banked' and kept for later use. It is hoped that this flexible market system will clean up emissions more
quickly and cheaply than a set of rigid rules.
Legislation enacted in Canada restricts the annual amount of sulfur dioxide emissions to 2.3 million tons in all of Canada's seven easternmost provinces, where acid rain
causes the most damage. A national cap for sulfur dioxide emissions has been set at 3.2 million tons per year. Legislation is currently being developed to enforce stricter
pollution emissions by 2010.
Norwegian law sets the goal of reducing sulfur dioxide emission to 76 percent of 1980 levels and nitrogen oxides emissions to 70 percent of the 1986 levels. To
encourage cleanup, Norway collects a hefty tax from industries that emit acid pollutants. In some cases these taxes make it more expensive to emit acid pollutants than
to reduce emissions.
B
International Agreements
Acid rain typically crosses national borders, making pollution control an international issue. Canada receives much of its acid pollution from the United States--by some
estimates as much as 50 percent. Norway and Sweden receive acid pollutants from Britain, Germany, Poland, and Russia. The majority of acid pollution in Japan comes
from China. Debates about responsibilities and cleanup costs for acid pollutants led to international cooperation. In 1988, as part of the Long-Range Transboundary Air
Pollution Agreement sponsored by the United Nations, the United States and 24 other nations ratified a protocol promising to hold yearly nitrogen oxide emissions at or
below 1987 levels. In 1991 the United States and Canada signed an Air Quality Agreement setting national limits on annual sulfur dioxide emissions from power plants
and factories. In 1994 in Oslo, Norway, 12 European nations agreed to reduce sulfur dioxide emissions by as much as 87 percent by 2010.
Legislative actions to prevent acid rain have results. The targets established in laws and treaties are being met, usually ahead of schedule. Sulfur emissions in Europe
decreased by 40 percent from 1980 to 1994. In Norway sulfur dioxide emissions fell by 75 percent during the same period. Since 1980 annual sulfur dioxide emissions
in the United States have dropped from 26 million tons to 18.3 million tons. Canada reports sulfur dioxide emissions have been reduced to 2.6 million tons, 18 percent
below the proposed limit of 3.2 million tons.
Monitoring stations in several nations report that precipitation is actually becoming less acidic. In Europe, lakes and streams are now growing less acid. However, this
does not seem to be the case in the United States and Canada. The reasons are not completely understood, but apparently, controls reducing nitrogen oxide emissions
only began recently and their effects have yet to make a mark. In addition, soils in some areas have absorbed so much acid that they contain no more neutralizing
alkaline chemicals. The weathering of rock will gradually replace the missing alkaline chemicals, but scientists fear that improvement will be very slow unless pollution
controls are made even stricter.
Contributed By:
John Hart
Microsoft ® Encarta ® 2009. © 1993-2008 Microsoft Corporation. All rights reserved.
Acid Rain.
I
INTRODUCTION
Acid Rain, form of air pollution in which airborne acids produced by electric utility plants and other sources fall to Earth in distant regions. The corrosive nature of acid
rain causes widespread damage to the environment. The problem begins with the production of sulfur dioxide and nitrogen oxides from the burning of fossil fuels, such
as coal, natural gas, and oil, and from certain kinds of manufacturing. Sulfur dioxide and nitrogen oxides react with water and other chemicals in the air to form sulfuric
acid, nitric acid, and other pollutants. These acid pollutants reach high into the atmosphere, travel with the wind for hundreds of miles, and eventually return to the
ground by way of rain, snow, or fog, and as invisible "dry" forms.
Damage from acid rain has been widespread in eastern North America and throughout Europe, and in Japan, China, and Southeast Asia. Acid rain leaches nutrients
from soils, slows the growth of trees, and makes lakes uninhabitable for fish and other wildlife. In cities, acid pollutants corrode almost everything they touch,
accelerating natural wear and tear on structures such as buildings and statues. Acids combine with other chemicals to form urban smog, which attacks the lungs,
causing illness and premature deaths.
II
FORMATION OF ACID RAIN
The process that leads to acid rain begins with the burning of fossil fuels. Burning, or combustion, is a chemical reaction in which oxygen from the air combines with
carbon, nitrogen, sulfur, and other elements in the substance being burned. The new compounds formed are gases called oxides. When sulfur and nitrogen are present
in the fuel, their reaction with oxygen yields sulfur dioxide and various nitrogen oxide compounds. In the United States, 70 percent of sulfur dioxide pollution comes
from power plants, especially those that burn coal. In Canada, industrial activities, including oil refining and metal smelting, account for 61 percent of sulfur dioxide
pollution. Nitrogen oxides enter the atmosphere from many sources, with motor vehicles emitting the largest share--43 percent in the United States and 60 percent in
Canada.
Once in the atmosphere, sulfur dioxide and nitrogen oxides undergo complex reactions with water vapor and other chemicals to yield sulfuric acid, nitric acid, and other
pollutants called nitrates and sulfates. The acid compounds are carried by air currents and the wind, sometimes over long distances. When clouds or fog form in acidladen air, they too are acidic, and so is the rain or snow that falls from them.
Acid pollutants also occur as dry particles and as gases, which may reach the ground without the help of water. When these "dry" acids are washed from ground
surfaces by rain, they add to the acids in the rain itself to produce a still more corrosive solution. The combination of acid rain and dry acids is known as acid deposition.
III
EFFECTS OF ACID RAIN
The acids in acid rain react chemically with any object they contact. Acids are corrosive chemicals that react with other chemicals by giving up hydrogen atoms. The
acidity of a substance comes from the abundance of free hydrogen atoms when the substance is dissolved in water. Acidity is measured using a pH scale with units from
0 to 14. Acidic substances have pH numbers from 1 to 6--the lower the pH number, the stronger, or more corrosive, the substance. Some nonacidic substances, called
bases or alkalis, are like acids in reverse--they readily accept the hydrogen atoms that the acids offer. Bases have pH numbers from 8 to 14, with the higher values
indicating increased alkalinity. Pure water has a neutral pH of 7--it is not acidic or basic. Rain, snow, or fog with a pH below 5.6 is considered acid rain.
When bases mix with acids, the bases lessen the strength of an acid (see Acids and Bases). This buffering action regularly occurs in nature. Rain, snow, and fog formed
in regions free of acid pollutants are slightly acidic, having a pH near 5.6. Alkaline chemicals in the environment, found in rocks, soils, lakes, and streams, regularly
neutralize this precipitation. But when precipitation is highly acidic, with a pH below 5.6, naturally occurring acid buffers become depleted over time, and nature's ability
to neutralize the acids is impaired. Acid rain has been linked to widespread environmental damage, including soil and plant degradation, depleted life in lakes and
streams, and erosion of human-made structures.
A
Soil
In soil, acid rain dissolves and washes away nutrients needed by plants. It can also dissolve toxic substances, such as aluminum and mercury, which are naturally
present in some soils, freeing these toxins to pollute water or to poison plants that absorb them. Some soils are quite alkaline and can neutralize acid deposition
indefinitely; others, especially thin mountain soils derived from granite or gneiss, buffer acid only briefly.
B
Trees
By removing useful nutrients from the soil, acid rain slows the growth of plants, especially trees. It also attacks trees more directly by eating holes in the waxy coating
of leaves and needles, causing brown dead spots. If many such spots form, a tree loses some of its ability to make food through photosynthesis. Also, organisms that
cause disease can infect the tree through its injured leaves. Once weakened, trees are more vulnerable to other stresses, such as insect infestations, drought, and cold
temperatures.
Spruce and fir forests at higher elevations, where the trees literally touch the acid clouds, seem to be most at risk. Acid rain has been blamed for the decline of spruce
forests on the highest ridges of the Appalachian Mountains in the eastern United States. In the Black Forest of southwestern Germany, half of the trees are damaged
from acid rain and other forms of pollution.
C
Agriculture
Most farm crops are less affected by acid rain than are forests. The deep soils of many farm regions, such as those in the Midwestern United States, can absorb and
neutralize large amounts of acid. Mountain farms are more at risk--the thin soils in these higher elevations cannot neutralize so much acid. Farmers can prevent acid
rain damage by monitoring the condition of the soil and, when necessary, adding crushed limestone to the soil to neutralize acid. If excessive amounts of nutrients have
been leached out of the soil, farmers can replace them by adding nutrient-rich fertilizer.
D
Surface Waters
Acid rain falls into and drains into streams, lakes, and marshes. Where there is snow cover in winter, local waters grow suddenly more acidic when the snow melts in the
spring. Most natural waters are close to chemically neutral, neither acidic nor alkaline: their pH is between 6 and 8. In the northeastern United States and southeastern
Canada, the water in some lakes now has a pH value of less than 5 as a result of acid rain. This means they are at least ten times more acidic than they should be. In
the Adirondack Mountains of New York State, a quarter of the lakes and ponds are acidic, and many have lost their brook trout and other fish. In the middle
Appalachian Mountains, over 1,300 streams are afflicted. All of Norway's major rivers have been damaged by acid rain, severely reducing salmon and trout populations.
E
Plants and Animals
The effects of acid rain on wildlife can be far-reaching. If a population of one plant or animal is adversely affected by acid rain, animals that feed on that organism may
also suffer. Ultimately, an entire ecosystem may become endangered. Some species that live in water are very sensitive to acidity, some less so. Freshwater clams and
mayfly young, for instance, begin dying when the water pH reaches 6.0. Frogs can generally survive more acidic water, but if their supply of mayflies is destroyed by
acid rain, frog populations may also decline. Fish eggs of most species stop hatching at a pH of 5.0. Below a pH of 4.5, water is nearly sterile, unable to support any
wildlife.
Land animals dependent on aquatic organisms are also affected. Scientists have found that populations of snails living in or near water polluted by acid rain are declining
in some regions. In The Netherlands songbirds are finding fewer snails to eat. The eggs these birds lay have weakened shells because the birds are receiving less
calcium from snail shells.
F
Human-Made Structures
Acid rain and the dry deposition of acidic particles damage buildings, statues, automobiles, and other structures made of stone, metal, or any other material exposed to
weather for long periods. The corrosive damage can be expensive and, in cities with very historic buildings, tragic. Both the Parthenon in Athens, Greece, and the Taj
Mahal in Agra, India, are deteriorating due to acid pollution.
G
Human Health
The acidification of surface waters causes little direct harm to people. It is safe to swim in even the most acidified lakes. However, toxic substances leached from soil can
pollute local water supplies. In Sweden, as many as 10,000 lakes have been polluted by mercury released from soils damaged by acid rain, and residents have been
warned to avoid eating fish caught in these lakes. In the air, acids join with other chemicals to produce urban smog, which can irritate the lungs and make breathing
difficult, especially for people who already have asthma, bronchitis, or other respiratory diseases. Solid particles of sulfates, a class of minerals derived from sulfur
dioxide, are thought to be especially damaging to the lungs.
H
Acid Rain and Global Warming
Acid pollution has one surprising effect that may be beneficial. Sulfates in the upper atmosphere reflect some sunlight out into space, and thus tend to slow down global
warming. Scientists believe that acid pollution may have delayed the onset of warming by several decades in the middle of the 20th century.
IV
EFFORTS TO CONTROL ACID RAIN
Acid rain can best be curtailed by reducing the amount of sulfur dioxide and nitrogen oxides released by power plants, motorized vehicles, and factories. The simplest
way to cut these emissions is to use less energy from fossil fuels. Individuals can help. Every time a consumer buys an energy-efficient appliance, adds insulation to a
house, or takes a bus to work, he or she conserves energy and, as a result, fights acid rain.
Another way to cut emissions of sulfur dioxide and nitrogen oxides is by switching to cleaner-burning fuels. For instance, coal can be high or low in sulfur, and some coal
contains sulfur in a form that can be washed out easily before burning. By using more of the low-sulfur or cleanable types of coal, electric utility companies and other
industries can pollute less. The gasoline and diesel oil that run most motor vehicles can also be formulated to burn more cleanly, producing less nitrogen oxide pollution.
Clean-burning fuels such as natural gas are being used increasingly in vehicles. Natural gas contains almost no sulfur and produces very low nitrogen oxides.
Unfortunately, natural gas and the less-polluting coals tend to be more expensive, placing them out of the reach of nations that are struggling economically.
Pollution can also be reduced at the moment the fuel is burned. Several new kinds of burners and boilers alter the burning process to produce less nitrogen oxides and
more free nitrogen, which is harmless. Limestone or sandstone added to the combustion chamber can capture some of the sulfur released by burning coal.
Once sulfur dioxide and oxides of nitrogen have been formed, there is one more chance to keep them out of the atmosphere. In smokestacks, devices called scrubbers
spray a mixture of water and powdered limestone into the waste gases (flue gases), recapturing the sulfur. Pollutants can also be removed by catalytic converters. In a
converter, waste gases pass over small beads coated with metals. These metals promote chemical reactions that change harmful substances to less harmful ones. In
the United States and Canada, these devices are required in cars, but they are not often used in smokestacks.
Once acid rain has occurred, a few techniques can limit environmental damage. In a process known as liming, powdered limestone can be added to water or soil to
neutralize the acid dropping from the sky. In Norway and Sweden, nations much afflicted with acid rain, lakes are commonly treated this way. Rural water companies
may need to lime their reservoirs so that acid does not eat away water pipes. In cities, exposed surfaces vulnerable to acid rain destruction can be coated with acidresistant paints. Delicate objects like statues can be sheltered indoors in climate-controlled rooms.
Cleaning up sulfur dioxide and nitrogen oxides will reduce not only acid rain but also smog, which will make the air look clearer. Based on a study of the value that
visitors to national parks place on clear scenic vistas, the U.S. Environmental Protection Agency thinks that improving the vistas in eastern national parks alone will be
worth $1 billion in tourist revenue a year.
A
National Legislation
In the United States, legislative efforts to control sulfur dioxide and nitrogen oxides began with passage of the Clean Air Act of 1970. This act established emissions
standards for pollutants from automobiles and industry. In 1990 Congress approved a set of amendments to the act that impose stricter limits on pollution emissions,
particularly pollutants that cause acid rain. These amendments aim to cut the national output of sulfur dioxide from 23.5 million tons to 16 million tons by the year
2010. Although no national target is set for nitrogen oxides, the amendments require that power plants, which emit about one-third of all nitrogen oxides released to
the atmosphere, reduce their emissions from 7.5 million tons to 5 million tons by 2010. These rules were applied first to selected large power plants in Eastern and
Midwestern states. In the year 2000, smaller, cleaner power plants across the country came under the law.
These 1990 amendments include a novel provision for sulfur dioxide control. Each year the government gives companies permits to release a specified number of tons
of sulfur dioxide. Polluters are allowed to buy and sell their emissions permits. For instance, a company can choose to reduce its sulfur dioxide emissions more than the
law requires and sell its unused pollution emission allowance to another company that is further from meeting emission goals; the buyer may then pollute above the
limit for a certain time. Unused pollution rights can also be 'banked' and kept for later use. It is hoped that this flexible market system will clean up emissions more
quickly and cheaply than a set of rigid rules.
Legislation enacted in Canada restricts the annual amount of sulfur dioxide emissions to 2.3 million tons in all of Canada's seven easternmost provinces, where acid rain
causes the most damage. A national cap for sulfur dioxide emissions has been set at 3.2 million tons per year. Legislation is currently being developed to enforce stricter
pollution emissions by 2010.
Norwegian law sets the goal of reducing sulfur dioxide emission to 76 percent of 1980 levels and nitrogen oxides emissions to 70 percent of the 1986 levels. To
encourage cleanup, Norway collects a hefty tax from industries that emit acid pollutants. In some cases these taxes make it more expensive to emit acid pollutants than
to reduce emissions.
B
International Agreements
Acid rain typically crosses national borders, making pollution control an international issue. Canada receives much of its acid pollution from the United States--by some
estimates as much as 50 percent. Norway and Sweden receive acid pollutants from Britain, Germany, Poland, and Russia. The majority of acid pollution in Japan comes
from China. Debates about responsibilities and cleanup costs for acid pollutants led to international cooperation. In 1988, as part of the Long-Range Transboundary Air
Pollution Agreement sponsored by the United Nations, the United States and 24 other nations ratified a protocol promising to hold yearly nitrogen oxide emissions at or
below 1987 levels. In 1991 the United States and Canada signed an Air Quality Agreement setting national limits on annual sulfur dioxide emissions from power plants
and factories. In 1994 in Oslo, Norway, 12 European nations agreed to reduce sulfur dioxide emissions by as much as 87 percent by 2010.
Legislative actions to prevent acid rain have results. The targets established in laws and treaties are being met, usually ahead of schedule. Sulfur emissions in Europe
decreased by 40 percent from 1980 to 1994. In Norway sulfur dioxide emissions fell by 75 percent during the same period. Since 1980 annual sulfur dioxide emissions
in the United States have dropped from 26 million tons to 18.3 million tons. Canada reports sulfur dioxide emissions have been reduced to 2.6 million tons, 18 percent
below the proposed limit of 3.2 million tons.
Monitoring stations in several nations report that precipitation is actually becoming less acidic. In Europe, lakes and streams are now growing less acid. However, this
does not seem to be the case in the United States and Canada. The reasons are not completely understood, but apparently, controls reducing nitrogen oxide emissions
only began recently and their effects have yet to make a mark. In addition, soils in some areas have absorbed so much acid that they contain no more neutralizing
alkaline chemicals. The weathering of rock will gradually replace the missing alkaline chemicals, but scientists fear that improvement will be very slow unless pollution
controls are made even stricter.
Contributed By:
John Hart
Microsoft ® Encarta ® 2009. © 1993-2008 Microsoft Corporation. All rights reserved.
↓↓↓ APERÇU DU DOCUMENT ↓↓↓