1 PROBABILITÉS CONDITIONNELLES ET INDÉPENDANCE
Publié le 23/05/2024
Extrait du document
«
1
PROBABILITÉS CONDITIONNELLES
ET INDÉPENDANCE
I.
Probabilité conditionnelle
Définition : Soit A et B deux événements avec 𝑃(𝐴) ≠ 0.
On appelle probabilité conditionnelle de B sachant A, la probabilité que
l'événement B se réalise sachant que l'événement A est réalisé.
Elle est notée 𝑃𝐴 (𝐵)
𝑃(𝐴∩𝐵)
et est définie par : 𝑃𝐴 (𝐵) =
.
𝑃(𝐴)
Exemples :
1) On tire une carte au hasard dans un jeu de 32 cartes.
Soit A l'événement "Le résultat est un pique".
Soit B l'événement "Le résultat est un roi".
Donc 𝐴 ∩ 𝐵 est l'événement "Le résultat est le roi de pique".
Alors : 𝑃(𝐴) =
8
=
1
et 𝑃(𝐴 ∩ 𝐵) =
1
.
32 4
32
Donc la probabilité que le résultat soit un roi sachant qu'on a tiré un pique est :
𝑃(𝐴∩𝐵) 1 1 1
𝑃𝐴 (𝐵) =
=
: = .
𝑃(𝐴)
32 4 8
On peut retrouver intuitivement ce résultat.
En effet, sachant que le résultat est un
pique, on a une chance sur 8 d'obtenir le roi.
2) Un sac contient 50 boules, dont 20 boules rouges et 30 boules noires, où il est
marqué soit "Gagné" ou soit "Perdu"
Sur 15 boules rouges, il est marqué Gagné.
Sur 9 boules noires, il est marqué Gagné.
On tire au hasard une boule dans le sac.
Soit R l'événement "On tire une boule rouge".
Soit G l'événement "On tire une boule marquée Gagné"
Donc RÇ G est l'événement "On tire une boule rouge marquée Gagné".
Alors : 𝑃(𝑅) =
20
=
2
= 0,4 et 𝑃(𝑅 ∩ 𝐺) =
15
=
3
= 0,3.
50 5
50 10
Donc la probabilité qu'on tire une boule marquée Gagné sachant qu'elle est rouge
𝑃(𝑅∩𝐺) 0,3 3
est : 𝑃𝑅 (𝐺) =
=
= = 0,75
𝑃(𝑅)
0,4 4
On peut retrouver intuitivement ce résultat.
En effet, sachant que le résultat est une
boule rouge, on a 15 chances sur 20 qu'il soit marqué Gagné.
2
Remarque :
La probabilité conditionnelle suit les règles et lois de probabilités vues pour les
probabilités simples.
On a en particulier :
Propriétés : Soit A et B deux événements avec 𝑃(𝐴) ≠ 0.
- 0 ≤ 𝑃𝐴 (𝐵) ≤ 1
- 𝑃𝐴 (𝐵̅ ) = 1 − 𝑃𝐴 (𝐵)
- 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) × 𝑃𝐴 (𝐵)
II.
Arbre pondéré
1) Exemple
On reprend le 2e exemple étudié au paragraphe I.
L'expérience aléatoire peut être schématisée par un arbre pondéré (ou arbre de
probabilité) :
2) Règles
Règle 1 : La somme des probabilités des branches issues d'un même nœud est
égale à 1.
Exemples :
- A partir du nœud "On tire une boule", on a : 𝑃(𝑅) + 𝑃(𝑅̅ ) = 0,4 + 0,6 = 1
- A partir du nœud "Boule rouge", on a : 𝑃𝑅 (𝐺̅ ) = 1 − 𝑃𝑅 (𝐺) = 1 − 0,75 = 0,25 .
Ces exemples font apparaître une formule donnée au paragraphe I.
3
Règle 2 : La probabilité d'une "feuille" (extrémité d'un chemin) est égale au produit
des probabilités du chemin aboutissant à cette feuille.
Exemple :
On considère la feuille 𝑅 ∩ 𝐺.
On a : 𝑃(𝑅 ∩ 𝐺) = 𝑃(𝑅) × 𝑃𝑅 (𝐺) = 0,4 × 0,75 = 0,3
Règle 3 (Formule des probabilités totales) : La probabilité d'un événement associé à
plusieurs "feuilles" est égale à la somme des probabilités de chacune de ces
"feuilles".
Exemple :
L'événement "On tire une boule marquée Gagné" est associé aux feuilles 𝑅 ∩ 𝐺
et 𝑅̅ ∩ 𝐺.
On a :
𝑃(𝑅 ∩ 𝐺) = 0,3 et
9
𝑃(𝑅̅ ∩ 𝐺)=
= 0,18 (Probabilité de tirer une boule noire marquée Gagné)
50
Donc 𝑃(𝐺) = 𝑃(𝑅 ∩ 𝐺) + 𝑃(𝑅̅ ∩ 𝐺) = 0,3 + 0,18 = 0,48.
Exemple : Calculer la probabilité d'un événement associé à plusieurs feuilles
Lors d’une épidémie chez des bovins, on s’est aperçu que si la maladie est
diagnostiquée suffisamment tôt chez un animal, on peut le guérir ; sinon la maladie
est mortelle.
Un test est mis au point et essayé sur un échantillon d’animaux dont 2 % est porteur
de la maladie.
On obtient les résultats suivants :
– si un animal est porteur de la maladie, le test est positif dans 85 % des cas ;
– si un animal est sain, le test est négatif dans 95 % des cas.
On choisit de prendre ces fréquences observées comme probabilités pour toute la
population et d’utiliser le test pour un dépistage préventif de la maladie.
On note respectivement M et T les événements « Être porteur de la maladie » et
« Avoir un test positif ».
1) Un animal est choisi au hasard.
Quelle est la probabilité que son test soit positif ?
D'après BAC....
»
↓↓↓ APERÇU DU DOCUMENT ↓↓↓
Liens utiles
- Grand oral mathématiques: Comment les probabilités conditionnelles sont-elles mises au profit des tests diagnostiques ?
- Grand oral svt maths : Comment les probabilités conditionnelles sont-elles mises au profit des tests de diagnostic?
- Probabilités conditionnelles
- Les probabilités peuvent-elles aider les footballeurs à marquer tous leurs tirs au but.
- L'invention du calcul des probabilités La "Géométrie du hasard" de Pascal Blaise Pascal (1623-1662)